Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Adv Sci (Weinh) ; 9(24): e2105320, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1905773

RESUMEN

Under ER stress conditions, the ER form of transmembrane proteins can reach the plasma membrane via a Golgi-independent unconventional protein secretion (UPS) pathway. However, the targeting mechanisms of membrane proteins for UPS are unknown. Here, this study reports that TMED proteins play a critical role in the ER stress-associated UPS of transmembrane proteins. The gene silencing results reveal that TMED2, TMED3, TMED9 and TMED10 are involved in the UPS of transmembrane proteins, such as CFTR, pendrin and SARS-CoV-2 Spike. Subsequent mechanistic analyses indicate that TMED3 recognizes the ER core-glycosylated protein cargos and that the heteromeric TMED2/3/9/10 complex mediates their UPS. Co-expression of all four TMEDs improves, while each single expression reduces, the UPS and ion transport function of trafficking-deficient ΔF508-CFTR and p.H723R-pendrin, which cause cystic fibrosis and Pendred syndrome, respectively. In contrast, TMED2/3/9/10 silencing reduces SARS-CoV-2 viral release. These results provide evidence for a common role of TMED3 and related TMEDs in the ER stress-associated, Golgi-independent secretion of transmembrane proteins.


Asunto(s)
COVID-19 , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Estrés del Retículo Endoplásmico , Glicoproteína de la Espiga del Coronavirus , Transportadores de Sulfato , COVID-19/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte de Proteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
J Am Soc Nephrol ; 31(4): 748-764, 2020 04.
Artículo en Inglés | MEDLINE | ID: covidwho-992931

RESUMEN

BACKGROUND: Regulation of sodium chloride transport in the aldosterone-sensitive distal nephron is essential for fluid homeostasis and BP control. The chloride-bicarbonate exchanger pendrin in ß-intercalated cells, along with sodium chloride cotransporter (NCC) in distal convoluted tubules, complementarily regulate sodium chloride handling, which is controlled by the renin-angiotensin-aldosterone system. METHODS: Using mice with mineralocorticoid receptor deletion in intercalated cells, we examined the mechanism and roles of pendrin upregulation via mineralocorticoid receptor in two different models of renin-angiotensin-aldosterone system activation. We also used aldosterone-treated NCC knockout mice to examine the role of pendrin regulation in salt-sensitive hypertension. RESULTS: Deletion of mineralocorticoid receptor in intercalated cells suppressed the increase in renal pendrin expression induced by either exogenous angiotensin II infusion or endogenous angiotensin II upregulation via salt restriction. When fed a low-salt diet, intercalated cell-specific mineralocorticoid receptor knockout mice with suppression of pendrin upregulation showed BP reduction that was attenuated by compensatory activation of NCC. In contrast, upregulation of pendrin induced by aldosterone excess combined with a high-salt diet was scarcely affected by deletion of mineralocorticoid receptor in intercalated cells, but depended instead on hypokalemic alkalosis through the activated mineralocorticoid receptor-epithelial sodium channel cascade in principal cells. In aldosterone-treated NCC knockout mice showing upregulation of pendrin, potassium supplementation corrected alkalosis and inhibited the pendrin upregulation, thereby lowering BP. CONCLUSIONS: In conjunction with NCC, the two pathways of pendrin upregulation, induced by angiotensin II through mineralocorticoid receptor activation in intercalated cells and by alkalosis through mineralocorticoid receptor activation in principal cells, play important roles in fluid homeostasis during salt depletion and salt-sensitive hypertension mediated by aldosterone excess.


Asunto(s)
Hipertensión/etiología , Nefronas/metabolismo , Nefronas/patología , Receptores de Mineralocorticoides/fisiología , Simportadores del Cloruro de Sodio/fisiología , Transportadores de Sulfato/metabolismo , Aldosterona , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Sistema Renina-Angiotensina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA